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Total progeny in a critical age-dependent

branching process with inmmigration

by Howard Weiner

1. Introduction.

At time t = 0, a renewal process starts with I.I.D. interarrival

times having non-lattice distribution function G (t), Go (0+) - 0. These

epochs are the arrival times of new-born immigrating cells, where k cells

arrive with probability pko' and let, for 0 < s < 1,

(1.1) h0 (a) E pkos

and denote

(1.2) 0 < -h'(1) - Z kPko <
k-l

Each immigrating cell, independent of any other cells, initiates an

age-dependent branching process (3] with cell lifetime distribution G(t),

G(G+) - 0, and non-lattice. The offspring generating function is

a

h(s) = E k ak  Assume that each initiated branching process is critical,
k-

that is,

(1.3) h'(1) w E kpk n I.
k(1



Denote by

(1.4) Z(t) - the total number of cells born by t arising from all

cells immigrating by t and their respective initiated critical

age-dependent branching processes.

The purpose of this paper is to obtain an explicit limit law for

the Laplace transform of Z(t) by using the corresponding result for the

Galton-Watson or discrete time process obtained by Pakes [6] and a series

of approximations.

2. Integral Equations and Approximations.

Assume that at t - 0, there are no cells present due to immLgration,

and hence no new cells to initiate a branching process.

Let

(2.1) N(t) - total number of cells born by t in a critical age-

dependent branching process as given by (1.3), (1.4).

Define

(2.2) #(G,t) M E exp-(GN(t)).

Then

(2.3) I(.,t) - ell 0(t) + l(#(G. 't.u))dG(uy-
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Let

(2.4) F(Glt) - E exp-(QZ(L)),

where Z(t) is as in (1.4).

Then for t > O, arguing as in [4],

(2.5) F(Q,t) 1. - G0 (t) + ith 0 (§(Q,t-u))F(gt-u)dGO(U)0

and F(Q,O) - I.

Let

-Q ft

(2.6) fn+(Q,t) - e'[1 G(t) +0 h(*n(Gt-u))dG(u)], n> ,

and 0o(Q,t) * 1.

Let

(2.7) §(B,n+l) - 0 h(§(Q,n)) for n > I

askd a(OO) U 1.
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Let & > 0 be a constant. Define the approximants. for a > 1,

t

(2.8) ?(n+I)(Ot) - 1 - 00(t) + 10ho([.a] (G,t-u))n (g,t-u)dG o(U)

and F (9,t) a 1.
0

Similarly, let

(2.9) P(Q,(n+l)) h0 (§(Q,[naj))P(Q,n) for n> 1,

and P(QO) 1,

which implies

n

P(o,n+l) 11 h (0[)).
0-1

We note the relationships ([61, lea 3 and also p. 285)

(2.10) *(Qt) 4(g i) as t - (see also [51, p. 228)

(2.11) #(B,n) O 9(o) as n

vhere #(Q) is the transform of a bona fide random variable.

(2.12) n(l - (O/n2)) < K < all n,

*wers K Ls a cmestant.



3. Limit Theorems.

Theorem 1. Assume that

(3.1) 0 < h(O) < 1, ho0(0) < 1,

and that

h'(1) - 1, 0 < h"(1) < -,ho(I) =

Denote y-= h"(l), and a S Ply.

Then for all 0> 0, a > 0,

(3.2) lir P(--,,n) - (sech a
It 

I 
n

Proof. We will indicate the adaptation of the method of proof of

Pakes [6] applied to this more general model, as Pakes' proof applies only

to the case where the imitgration mean interarrival tim - men lifetime .
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The model here corresponds to the case where the immigration

interarrival time is a > 0, and themean lifetime is 1.

Case I. a> 1.

Using Pakewe notation ([6] eq. 2 0 ,p.28 5 ) for ouz -.ass,

a
(3.3) P(G,(n+l)) - II h (§(Q,[ma])).

mu1

Since ([6] eq. 21, p. 285)

I(Gk) I #(Q) as k

we may write, via ([6] eq. 30, 31, p. 285), where 0 n a/n 2

n

(3.4) log P(Q ,(ni-)) - -E (1-0(0 ,[mal)+R~ ) (Q)
a 3,.1

where Rn(o) 0 as n " if E (1-0(0 ,[ma]) is bounded in n.
rn-I

Writing

n n(3.5) -E E 1 efi] 1 Q)
M-1 ,.1

+ A E (1(0 ,[ma])-I( )),owl

and by Pakes ([6] eq. 31, p. 287),

(3.6) -E (1-0(0)) -8040y)1 /2 .

Mel
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Using the proof of Lema 4, pp. 286-287 and p. 288 of [61. om obtaina

that, as n u

n n -6[m]l/n I -6ax

(3.7) 0 ((,a)-§( ) n y n " 15 fo ..a6 x dx,
rn-i rn-i 1+. "6 [ " ]/n 0+ d

where, following [6), we have denoted

(3.8) 6 E2 4 .

Since

1l -8ax 1 ( l+e 6 a\

(3.9) 8 1Ie .6a x  dx - -- log e 2 ) '

1+- 
6axa20 a1+.

eq. (3.4) - (3.9) yield the result for the case a > 1.

Case I. 0 < a < 1.

Observe first that if i/a is a positive integer, that

[nal i/a
(3.10) P(9,n-l) [ In h .((k))

If a - ir, where 0 < A < r are relatively prime positive integers,

then it can be seen that

.[na] .
(3.11) P(e,n+i) n I h (0(0,k)))

k-1i

[n/ri
n h o((OQ,kL)).
k-l

Now let n - a in (3.10), (3.11), replacing 0 by B/n 2  Apply Paks'

limit result ([61, p. 265) to the right side of (3.10), and to the first
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product on the right of (3.11). Apply the result of Case I above to

the second product on the right of (3.11). This proves Case II for

0 < a < 1, a rational.

Suppose 0 < a < 1 is arbitrary. Choose a sequence of rationale

(ar) such that ar - a.

By the (uniform) continuity and monotonicity in a of the product

for P(O,n+l) given on the right side of (2.9), it follows that one can

choose the convergent sequence of rationals [ar) such that for all

r > R0 , n> N0 , either (by a slight expansion of notation)

2 2 2(3.12) P(Q/n2,n,a r ) P(G/n2,n,s,) 5 P(Q/n2, n~ar+l)

or

P(Q/n ,n,ar+) .< P(9/n ,n,a) < P(G/n 2,nar).

Now let n -. w, then r -. m in (3.12), using the continuity of the

function on the right side of (2.2). This suffices for the result.

Lemma. Let G (t) and G(t) be two distribution functions such that

O(O+) - G(O+) - 0

and

40
0 < m, j J tdG(t) < m

0<2 mj :tdG(t) <e.0

Let a a 2/a,*
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Asse

0 < ,ft2dG(t) e
0

0 < t t2dG (t) < .0 0

Let G or(t) and G () denote the r-th convolutions of G and G, respectively.

Let G * H(t) denote the convolution of G and 1H. Then, uniformly in k,

0 < k < n,

(3.13) lim G * C. t) 0
t -* a * o °,n-k

when n - 2t(l+e] for all C > 0,

(3.14) lia (1 - G[ka] * Gon(t) 0

when n - Ft(ke) for all e > 0.
m2

Proof. Let (XYl be I.I.D. each with distribution G.

Let (Y5 ] be I.I.D. each with distribution Go t and independent of [X5].

Define

(i ka] n-k
(3.15) S" E (XEXL) + E (Y I EY)

Then to prove (3.13), (3.14) together, i. suffices to show that

(see [2])

(3.16) urn P(ISn,kI > 34m2 ) = 0,

uniformly in k, 0 < k < n.
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By Chebyshev's inequality,

[ka]Var X + (n-k)Var YI (na)Var X + n Var Y
(3.17) P(ISn I > 3em2 ) <5 - ,

)k 3 2  (3cm 2n)
2  - (3m 2n)

2

which goes to zero independent of k, as n -.

Note: By using the techniques of [i], it may be possible to relax the

second moment conditions and still obtain that P(ISn,kI > e] goes to zero

uniformly in k, as n -c o, but this has not been done.

Theorem 2. Assume the conditions of Theorem 1 and the lemma. Then

lrn F(,t [sech V" 1
t - t CO t M

Proof. The proof is by use of approximants, writing

(3.18) F(Q,t) - P(@,(n+l)) B F(Q,t) - F (n+0), c) + F(n+l)(9,t) - P(Q,(n+l)).

t

(3.19) F( 9,t) - F(Qt) 0 [ho(# 0[na](,t-u))Fn (Q,t-u)

-h ( (Q,t-u))F n (,t-u) + h (§(G,t-u))Fn (Qt-u)

- ho ((Q,t-u))F(Q,t-u)]dGo(u).
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The proof will be divided into several clatms, using an abbreviated

notation. Only the proofs of elaiwrs IV, VIII will be given, since the

others either follow similarly, or are similar to those given in [2], [6].

(3.20) Claim I: § - 0 > 0, all t, 9, n.n

(3.21) Claim II: F(n+l ) - F > 0, all t, 9, n.

(3.22) Claim III: [[na](,t) - '(Wt) < (I - [(Gna] (t).

n
(3.23) Claim IV: Fn+ 1 - F n< m (l-( '))' G [ka * Go,n+lk(t)

+ Go,n+l (t).

Proof. By (3.19),

(3.24) Fn+I - F = F F n (ho([ ) - h ()) + Sho( )(Fn-F).

Applying the mean value theorem to the first term on the right of (3.24),

bounding Fn by 1 in the integrand yields

(3.25) F n+l - F < f(Fn-F)dG° + moC[na] G o(t).(l-§(Q)).

Iteration of (3.25) and using F1 - F 1 - F < I in the last step yields

the result.

(3.26) Claim V: n (0,t) - §(Q,n) > 0, all n, 0, t.

(3.27) Claim V: Fn (,t) - P(Q,n) > 0, all n, 0, t.

ni



(3.28) claim vII: #r41 - (i+l) < (1-G (t))(1-4(Q)), all n > 0.

(3.29) Claim VIII:

n-IFn+l(,t) - P(9,0+1) c(1-(Q))o F (l-G j ) *.G0  (t)k-i Ua o,n-k~t

o,n-l

where c max(j,mo) and G - 0 for a > O.

Proof. By the expression

(3.30) F~.i - Pi+l) - fho ([na]).(Fn P(n))dG0

+ fP(n)[h ( na) - h (4 (fnal)) IG d 0

+ (1-Go(t))(1l-P(n)),

and the mean value theorem, (3.30) yields

(3.31) Fn+1 - P(n+l) - f(Fn-P(n))dGo + mo (4 Ina] "( Jn&]))dG0 + (1-G0(t)).

By (3.28) and (3.31),

(3.32) FJ - P(n+l) < %(F-P(n))dG + mo(l - Ginal-1 ) * CO(t) + ('-0(t)).

Iteration and use of the facts that FI  F() - 0 and 2 P(2).52 I . GO(t)
yield the result.

12
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We may now complete the proof of Theorem 2.

Claims IV, VIII yield the inequalities

n
(3.33) -G o,n+l(t) - mo (-0(0,t)) Z G[ka] * G (t)

k-l o°n+I-k

n-i
< F(Q,t) - P(Q,n+l) _< c(1-l(9)) E (-G [ka] G o,n-k

+ c(I-G) * Go,n. I .

Now, set n *--L-m- in the right (left) inequalities, respectively.

0

Substitute 9/n2 for 9 in (3.33). Then, since from (2.12),

1 0(0/n2) <Kn

for some constant K, let t -. =. The lema, via uniformity of approach of

the stumnands to zero, yields that the right and left sides of (3.31) go to

zero. Now Theorem 1 completes the proof.

13
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